A Brief History of Cloud Computing

July 29, 2013

Believe it or not, "cloud computing" concepts date back to the 1950s when large-scale mainframes were made available to schools and corporations. The mainframe's colossal hardware infrastructure was installed in what could literally be called a "server room" (since the room would generally only be able to hold a single mainframe), and multiple users were able to access the mainframe via "dumb terminals" – stations whose sole function was to facilitate access to the mainframes. Due to the cost of buying and maintaining mainframes, an organization wouldn't be able to afford a mainframe for each user, so it became practice to allow multiple users to share access to the same data storage layer and CPU power from any station. By enabling shared mainframe access, an organization would get a better return on its investment in this sophisticated piece of technology.

Mainframe Computer

A couple decades later in the 1970s, IBM released an operating system called VM that allowed admins on their System/370 mainframe systems to have multiple virtual systems, or "Virtual Machines" (VMs) on a single physical node. The VM operating system took the 1950s application of shared access of a mainframe to the next level by allowing multiple distinct compute environments to live in the same physical environment. Most of the basic functions of any virtualization software that you see nowadays can be traced back to this early VM OS: Every VM could run custom operating systems or guest operating systems that had their "own" memory, CPU, and hard drives along with CD-ROMs, keyboards and networking, despite the fact that all of those resources would be shared. "Virtualization" became a technology driver, and it became a huge catalyst for some of the biggest evolutions in communications and computing.

Mainframe Computer

In the 1990s, telecommunications companies that had historically only offered single dedicated point–to-point data connections started offering virtualized private network connections with the same service quality as their dedicated services at a reduced cost. Rather than building out physical infrastructure to allow for more users to have their own connections, telco companies were able to provide users with shared access to the same physical infrastructure. This change allowed the telcos to shift traffic as necessary to allow for better network balance and more control over bandwidth usage. Meanwhile, virtualization for PC-based systems started in earnest, and as the Internet became more accessible, the next logical step was to take virtualization online.

If you were in the market to buy servers ten or twenty years ago, you know that the costs of physical hardware, while not at the same level as the mainframes of the 1950s, were pretty outrageous. As more and more people expressed demand to get online, the costs had to come out of the stratosphere, and one of the ways that was made possible was by ... you guessed it ... virtualization. Servers were virtualized into shared hosting environments, Virtual Private Servers, and Virtual Dedicated Servers using the same types of functionality provided by the VM OS in the 1950s. As an example of what that looked like in practice, let's say your company required 13 physical systems to run your sites and applications. With virtualization, you can take those 13 distinct systems and split them up between two physical nodes. Obviously, this kind of environment saves on infrastructure costs and minimizes the amount of actual hardware you would need to meet your company's needs.

Virtualization

As the costs of server hardware slowly came down, more users were able to purchase their own dedicated servers, and they started running into a different kind of problem: One server isn't enough to provide the resources I need. The market shifted from a belief that "these servers are expensive, let's split them up" to "these servers are cheap, let's figure out how to combine them." Because of that shift, the most basic understanding of "cloud computing" was born online. By installing and configuring a piece of software called a hypervisor across multiple physical nodes, a system would present all of the environment's resources as though those resources were in a single physical node. To help visualize that environment, technologists used terms like "utility computing" and "cloud computing" since the sum of the parts seemed to become a nebulous blob of computing resources that you could then segment out as needed (like telcos did in the 90s). In these cloud computing environments, it became easy add resources to the "cloud": Just add another server to the rack and configure it to become part of the bigger system.

Clouds

As technologies and hypervisors got better at reliably sharing and delivering resources, many enterprising companies decided to start carving up the bigger environment to make the cloud's benefits to users who don't happen to have an abundance of physical servers available to create their own cloud computing infrastructure. Those users could order "cloud computing instances" (also known as "cloud servers") by ordering the resources they need from the larger pool of available cloud resources, and because the servers are already online, the process of "powering up" a new instance or server is almost instantaneous. Because little overhead is involved for the owner of the cloud computing environment when a new instance is ordered or cancelled (since it's all handled by the cloud's software), management of the environment is much easier. Most companies today operate with this idea of "the cloud" as the current definition, but SoftLayer isn't "most companies."

SoftLayer took the idea of a cloud computing environment and pulled it back one more step: Instead of installing software on a cluster of machines to allow for users to grab pieces, we built a platform that could automate all of the manual aspects of bringing a server online without a hypervisor on the server. We call this platform "IMS." What hypervisors and virtualization do for a group of servers, IMS does for an entire data center. As a result, you can order a bare metal server with all of the resources you need and without any unnecessary software installed, and that server will be delivered to you in a matter of hours. Without a hypervisor layer between your operating system and the bare metal hardware, your servers perform better. Because we automate almost everything in our data centers, you're able to spin up load balancers and firewalls and storage devices on demand and turn them off when you're done with them. Other providers have cloud-enabled servers. We have cloud-enabled data centers.

SoftLayer Pod

IBM and SoftLayer are leading the drive toward wider adoption of innovative cloud services, and we have ambitious goals for the future. If you think we've come a long way from the mainframes of the 1950s, you ain't seen nothin' yet.

-James

Categories: