Posts Tagged 'Use Case'

September 30, 2013

The Economics of Cloud Computing: If It Seems Too Good to Be True, It Probably Is

One of the hosts of a popular Sirius XM radio talk show was recently in the market to lease a car, and a few weeks ago, he shared an interesting story. In his research, he came across an offer he came across that seemed "too good to be true": Lease a new Nissan Sentra with no money due at signing on a 24-month lease for $59 per month. The car would as "base" as a base model could be, but a reliable car that can be driven safely from Point A to Point B doesn't need fancy "upgrades" like power windows or an automatic transmission. Is it possible to lease new car for zero down and $59 per month? What's the catch?

After sifting through all of the paperwork, the host admitted the offer was technically legitimate: He could lease a new Nissan Sentra for $0 down and $59 per month for two years. Unfortunately, he also found that "lease" is just about the extent of what he could do with it for $59 per month. The fine print revealed that the yearly mileage allowance was 0 (zero) — he'd pay a significant per-mile rate for every mile he drove the car.

Let's say the mileage on the Sentra was charged at $0.15 per mile and that the car would be driven a very-conservative 5,000 miles per year. At the end of the two-year lease, the 10,000 miles on the car would amount to a $1,500 mileage charge. Breaking that cost out across the 24 months of the lease, the effective monthly payment would be around $121, twice the $59/mo advertised lease price. Even for a car that would be used sparingly, the numbers didn't add up, so the host wound up leasing a nicer car (that included a non-zero mileage allowance) for the same monthly cost.

The "zero-down, $59/mo" Sentra lease would be a fantastic deal for a person who wants the peace of mind of having a car available for emergency situations only, but for drivers who put the national average of 15,000 miles per year, the economic benefit of such a low lease rate is completely nullified by the mileage cost. If you were in the market to lease a new car, would you choose that Sentra deal?

At this point, you might be wondering why this story found its way onto the SoftLayer Blog, and if that's the case, you don't see the connection: Most cloud computing providers sell cloud servers like that car lease.

The "on demand" and "pay for what you use" aspects of cloud computing make it easy for providers to offer cloud servers exclusively as short-term utilities: "Use this cloud server for a couple of days (or hours) and return it to us. We'll just charge you for what you use." From a buyer's perspective, this approach is easy to justify because it limits the possibility of excess capacity — paying for something you're not using. While that structure is effective (and inexpensive) for customers who sporadically spin up virtual server instances and turn them down quickly, for the average customer looking to host a website or application that won't be turned off in a given month, it's a different story.

Instead of discussing the costs in theoretical terms, let's look at a real world example: One of our competitors offers an entry-level Linux cloud server for just over $15 per month (based on a 730-hour month). When you compare that offer to SoftLayer's least expensive monthly virtual server instance (@ $50/mo), you might think, "OMG! SoftLayer is more than three times as expensive!"

But then you remember that you actually want to use your server.

You see, like the "zero down, $59/mo" car lease that doesn't include any mileage, the $15/mo cloud server doesn't include any bandwidth. As soon as you "drive your server off the lot" and start using it, that "fantastic" rate starts becoming less and less fantastic. In this case, outbound bandwidth for this competitor's cloud server starts at $0.12/GB and is applied to the server's first outbound gigabyte (and every subsequent gigabyte in that month). If your server sends 300GB of data outbound every month, you pay $36 in bandwidth charges (for a combined monthly total of $51). If your server uses 1TB of outbound bandwidth in a given month, you end up paying $135 for that "$15/mo" server.

Cloud servers at SoftLayer are designed to be "driven." Every monthly virtual server instance from SoftLayer includes 1TB of outbound bandwidth at no additional cost, so if your cloud server sends 1TB of outbound bandwidth, your total charge for the month is $50. The "$15/mo v. $50/mo" comparison becomes "$135/mo v. $50/mo" when we realize that these cloud servers don't just sit in the garage. This illustration shows how the costs compare between the two offerings with monthly bandwidth usage up to 1.3TB*:

Cloud Cost v Bandwidth

*The graphic extends to 1.3TB to show how SoftLayer's $0.10/GB charge for bandwidth over the initial 1TB allotment compares with the competitor's $0.12/GB charge.

Most cloud hosting providers sell these "zero down, $59/mo car leases" and encourage you to window-shop for the lowest monthly price based on number of cores, RAM and disk space. You find the lowest price and mentally justify the cost-per-GB bandwidth charge you receive at the end of the month because you know that you're getting value from the traffic that used that bandwidth. But you'd be better off getting a more powerful server that includes a bandwidth allotment.

As a buyer, it's important that you make your buying decisions based on your specific use case. Are you going to spin up and spin down instances throughout the month or are you looking for a cloud server that is going to stay online the entire month? From there, you should estimate your bandwidth usage to get an idea of the actual monthly cost you can expect for a given cloud server. If you don't expect to use 300GB of outbound bandwidth in a given month, your usage might be best suited for that competitor's offering. But then again, it's probably worth mentioning that that SoftLayer's base virtual server instance has twice the RAM, more disk space and higher-throughput network connections than the competitor's offering we compared against. Oh yeah, and all those other cloud differentiators.

-@khazard

July 9, 2013

When to Consider Riak for Your Big Data Architecture

In my Breaking Down 'Big Data' – Database Models, I briefly covered the most common database models, their strengths, and how they handle the CAP theorem — how a distributed storage system balances demands of consistency and availability while maintaining partition tolerance. Here's what I said about Dynamo-inspired databases:

What They Do: Distributed key/value stores inspired by Amazon's Dynamo paper. A key written to a dynamo ring is persisted in several nodes at once before a successful write is reported. Riak also provides a native MapReduce implementation.
Horizontal Scaling: Dynamo-inspired databases usually provide for the best scale and extremely strong data durability.
CAP Balance: Prefer availability over consistency
When to Use: When the system must always be available for writes and effectively cannot lose data.
Example Products: Cassandra, Riak, BigCouch

This type of key/value store architecture is very unique from the document-oriented MongoDB solutions we launched at the end of last year, so we worked with Basho to prioritize development of high-performance Riak solutions on our global platform. Since you already know about MongoDB, let's take a few minutes to meet the new kid on the block.

Riak is a distributed database architected for availability, fault tolerance, operational simplicity and scalability. Riak is masterless, so each node in a Riak cluster is the same and contains a complete, independent copy of the Riak package. This design makes the Riak environment highly fault tolerant and scalable, and it also aids in replication — if a node goes down, you can still read, write and update data.

As you approach the daunting prospect of choosing a big data architecture, there are a few simple questions you need to answer:

  1. How much data do/will I have?
  2. In what format am I storing my data?
  3. How important is my data?

Riak may be the choice for you if [1] you're working with more than three terabytes of data, [2] your data is stored in multiple data formats, and [3] your data must always be available. What does that kind of need look like in real life, though? Luckily, we've had a number of customers kick Riak's tires on SoftLayer bare metal servers, so I can share a few of the use cases we've seen that have benefited significantly from Riak's unique architecture.

Use Case 1 – Digital Media
An advertising company that serves over 10 billion ads per month must be able to quickly deliver its content to millions of end users around the world. Meeting that demand with relational databases would require a complex configuration of expensive, vertically scaled hardware, but it can be scaled out horizontally much easier with Riak. In a matter of only a few hours, the company is up and running with an ad-serving infrastructure that includes a back-end Riak cluster in Dallas with a replication cluster in Singapore along with an application tier on the front end with Web servers, load balancers and CDN.

Use Case 2 – E-commerce
An e-commerce company needs 100-percent availability. If any part of a customer's experience fails, whether it be on the website or in the shopping cart, sales are lost. Riak's fault tolerance is a big draw for this kind of use case: Even if one node or component fails, the company's data is still accessible, and the customer's user experience is uninterrupted. The shopping cart structure is critical, and Riak is built to be available ... It's a perfect match.

As an additional safeguard, the company can take advantage of simple multi-datacenter replication in their Riak Enterprise environment to geographically disperse content closer to its customers (while also serving as an important tool for disaster recovery and backup).

Use Case 3 – Gaming
With customers like Broken Bulb and Peak Games, SoftLayer is no stranger to the gaming industry, so it should come as no surprise that we've seen interesting use cases for Riak from some of our gaming customers. When a game developer incorporated Riak into a new game to store player data like user profiles, statistics and rankings, the performance of the bare metal infrastructure blew him away. As a result, the game's infrastructure was redesigned to also pull gaming content like images, videos and sounds from the Riak database cluster. Since the environment is so easy to scale horizontally, the process on the infrastructure side took no time at all, and the multimedia content in the game is getting served as quickly as the player data.

Databases are common bottlenecks for many applications, but they don't have to be. Making the transition from scaling vertically (upgrading hardware, adding RAM, etc.) to scaling horizontally (spreading the work intelligently across multiple nodes) alleviates many of the pain points for a quickly growing database environment. Have you made that transition? If not, what's holding you back? Have you considered implementing Riak?

-@marcalanjones

Subscribe to use-case